A new method for joint susceptibility artefact correction and super-resolution for dMRI
نویسندگان
چکیده
Diffusion magnetic resonance imaging (dMRI) has become increasingly relevant in clinical research and neuroscience. It is commonly carried out using the ultra-fast MRI acquisition technique Echo-Planar Imaging (EPI). While offering crucial reduction of acquisition times, two limitations of EPI are distortions due to varying magnetic susceptibilities of the object being imaged and its limited spatial resolution. In the recent years progress has been made both for susceptibility artefact correction and increasing of spatial resolution using image processing and reconstruction methods. However, so far, the interplay between both problems has not been studied and super-resolution techniques could only be applied along one axis, the slice-select direction, limiting the potential gain in spatial resolution. In this work we describe a new method for joint susceptibility artefact correction and super-resolution in EPI-MRI that can be used to increase resolution in all three spatial dimensions and in particular increase in-plane resolutions. The key idea is to reconstruct a distortion-free, high-resolution image from a number of low-resolution EPI data that are deformed in different directions. Numerical results on dMRI data of a human brain indicate that this technique has the potential to provide for the first time in-vivo dMRI at mesoscopic spatial resolution (i.e. 500 μm); a spatial resolution that could bridge the gap between white-matter information from ex-vivo histology (≈ 1 μm) and in-vivo dMRI (≈ 2000 μm).
منابع مشابه
Pseudo Zernike Moment-based Multi-frame Super Resolution
The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...
متن کاملDictionary Based Super-Resolution for Diffusion MRI
Diffusion magnetic resonance imaging (dMRI) provides unique capabilities for non-invasive mapping of fiber tracts in the brain. It however suffers from relatively low spatial resolution, often leading to partial volume effects. In this paper, we propose to use a super-resolution approach based on dictionary learning for alleviating this problem. Unlike the majority of existing super-resolution ...
متن کاملA Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملEfficient Global Spatial-Angular Sparse Coding for Diffusion MRI with Separable Dictionaries
Diffusion MRI (dMRI) provides the ability to reconstruct neuronal fibers in the brain, in vivo, by measuring water diffusion along angular gradient directions in q-space. High angular resolution diffusion imaging (HARDI) can produce better estimates of fiber orientation than the popularly used diffusion tensor imaging, but the high number of samples needed to estimate diffusivity requires lengt...
متن کاملRobust Fuzzy Content Based Regularization Technique in Super Resolution Imaging
Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014